UNIFOLIATA regulates leaf and flower morphogenesis in pea

نویسندگان

  • Julie Hofer
  • Lynda Turner
  • Roger Hellens
  • Mike Ambrose
  • Peter Matthews
  • Anthony Michael
  • Noel Ellis
چکیده

BACKGROUND The vegetative phenotype of the pea mutant unifoliata (uni) is a simplification of the wild-type compound leaf to a single leaflet. Mutant uni plants are also self-sterile and the flowers resemble known floral meristem and organ identity mutants. In Antirrhinum and Arabidopsis, mutations in the floral meristem identity gene FLORICAULA/LEAFY (FLO/LFY) affect flower development alone, whereas the tobacco FLO/LFY homologue, NFL, is expressed in vegetative tissues, suggesting that NFL specifies determinacy in the progenitor cells for both flowers and leaves. In this paper, we characterised the pea homologue of FLO/LFY. RESULTS The pea cDNA homologue of FLO/LFY, PEAFLO, mapped to the uni locus in recombinant-inbred mapping populations and markers based on PEAFLO cosegregated with uni in segregating sibling populations. The characterisation of two spontaneous uni mutant alleles, one containing a deletion and the other a point mutation in the PEAFLO coding sequences, predicted that PEAFLO corresponds to UNI and that the mutant vegetative phenotype was conferred by the defective PEAFLO gene. CONCLUSIONS The uni mutant demonstrates that there are shared regulatory processes in the morphogenesis of leaves and flowers and that floral meristem identity genes have an extended role in plant development. Pleiotropic regulatory genes such as UNI support the hypothesis that leaves and flowers derive from a common ancestral sporophyll-like structure. The regulation of indeterminancy during leaf and flower morphogenesis by UNI may reflect a primitive function for the gene in the pre-angiosperm era.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif.

Current understanding of floral development is mainly based on what we know from Arabidopsis (Arabidopsis thaliana) and Antirrhinum majus. However, we can learn more by comparing developmental mechanisms that may explain morphological differences between species. A good example comes from the analysis of genes controlling flower development in pea (Pisum sativum), a plant with more complex leav...

متن کامل

Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula.

Plant leaves are diverse in their morphology, reflecting to a large degree the plant diversity in the natural environment. How different leaf morphology is determined is not yet understood. The leguminous plant Medicago truncatula exhibits dissected leaves with three leaflets at the tip. We show that development of the trifoliate leaves is determined by the Cys(2)His(2) zinc finger transcriptio...

متن کامل

Hormone interactions and regulation of Unifoliata, PsPK2, PsPIN1 and LE gene expression in pea (Pisum sativum) shoot tips.

The Unifoliata (Uni) gene plays a major role in development of the compound leaf in pea, but its regulation is unknown. In this study, we examined the effects of plant hormones on the expression of Uni, PsPK2 (the gene for a pea homolog of Arabidopsis PID, a regulator of PIN1 targeting), PsPIN1 (the major gene for a putative auxin efflux carrier) and LE (a gibberellin biosynthesis gene, GA3ox),...

متن کامل

Tendril-less regulates tendril formation in pea leaves.

Tendrils are contact-sensitive, filamentous organs that permit climbing plants to tether to their taller neighbors. Tendrilled legume species are grown as field crops, where the tendrils contribute to the physical support of the crop prior to harvest. The homeotic tendril-less (tl) mutation in garden pea (Pisum sativum), identified almost a century ago, transforms tendrils into leaflets. In thi...

متن کامل

Stamina pistilloida, the Pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves.

Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meriste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997